45 research outputs found

    Using in situ GC-MS for analysis of C-2-C-7 volatile organic acids in ambient air of a boreal forest site

    Get PDF
    An in situ method for studying gas-phase C-2-C-7 monocarboxylic volatile organic acids (VOAs) in ambient air was developed and evaluated. Samples were collected directly into the cold trap of the thermal desorption unit (TD) and analysed in situ using a gas chromatograph (GC) coupled to a mass spectrometer (MS). A polyethylene glycol column was used for separating the acids. The method was validated in the laboratory and tested on the ambient air of a boreal forest in June 2015. Recoveries of VOAs from fluorinated ethylene propylene (FEP) and heated stainless steel inlets ranged from 83 to 123 %. Different VOAs were fully desorbed from the cold trap and well separated in the chromatograms. Detection limits varied between 1 and 130 pptv and total uncertainty of the method at mean ambient mixing ratios was between 16 and 76 %. All straight chain VOAs except heptanoic acid in the ambient air measurements were found with mixing ratios above the detection limits. The highest mixing ratios were found for acetic acid and the highest relative variations for hexanoic acid. In addition, mixing ratios of acetic and propanoic acids measured by the novel GC-MS method were compared with proton-mass-transfer time-off-light mass spectrometer (PTR-TOFMS) data. Both instruments showed similar variations, but differences in the mixing ratio levels were significant.Peer reviewe

    OH reactivity from the emissions of different tree species : investigating the missing reactivity in a boreal forest

    Get PDF
    In forested area, a large fraction of total hydroxyl radical (OH) reactivity remains unaccounted for. Very few studies have looked at the variations in total OH reactivity from biogenic emissions. In the present study, we investigate the total OH reactivity from three common boreal tree species (Scots pine, Norway spruce, and downy birch) by comparing it with the calculated reactivity from the chemically identified emissions. Total OH reactivity was measured using the comparative reactivity method (CRM), and the chemical composition of the emissions was quantified with two gas chromatographs coupled with mass spectrometers (GC-MSs). Dynamic branch enclosures were used, and emissions from one branch of a tree at the time were measured by periodically rotating between them. Results show that birch had the highest values of total OH reactivity of the emissions (TOHRE), while pine had the lowest. The main drivers for the known reactivity of pine and spruce were monoterpenes and sesquiterpenes. Birch emissions were dominated by sesquiterpenes, but monoterpenes and green leaf volatiles (GLVs) were present as well. However, calculated reactivity values remained low, leading to the highest missing fraction of reactivity (> 96 %), while pine and spruce had similar missing reactivity fractions between 56% and 82% (higher in the spring and decreasing as the summer proceeded). The high average values were driven by low-reactivity periods, and the fraction of missing reactivity got smaller for pine and spruce when the TOHRE values increased. Important exceptions were identified for periods when the emission profiles changed from terpenes to GLVs, a family of compounds containing a backbone of six carbon atoms with various functionalities (e.g. alcohols, aldehydes, esters) that indicate that the plant is suffering from stress. Then, very high TOHRE values were measured, and the missing fraction remained high. This study found a different trend in the missing OHRE fraction of the Norway spruce from spring to autumn compared to one previous study (Nolscher et al., 2013), which indicates that additional studies are required to fully understand the complexity of biogenic reactive emissions. Future studies of boreal trees in situ should be conducted to confirm the findings presented.Peer reviewe

    Sesquiterpenes dominate monoterpenes in northern wetland emissions

    Get PDF
    We have studied biogenic volatile organic compound (BVOC) emissions and their ambient concentrations at a sub-Arctic wetland (Lompolojankka, Finland), which is an open, nutrient-rich sedge fen and a part of the Pallas-Sodankyla Global Atmosphere Watch (GAW) station. Measurements were conducted during the growing season in 2018 using an in situ thermal-desorption-gaschromatograph-mass-spectrometer (TD-GC-MS). Earlier studies have shown that isoprene is emitted from boreal wetlands, and it also turned out to be the most abundant compound in the current study. Monoterpene (MT) emissions were generally less than 10 % of the isoprene emissions (mean isoprene emission over the growing season, 44 mu g M-2 h(-1)), but sesquiterpene (SQT) emissions were higher than MT emissions all the time. The main MTs emitted were alpha-pinene, 1,8-cineol, myrcene, limonene and 3 Delta-carene. Of SQTs cadinene, beta-cadinene and alpha-farnesene had the major contribution. During early growing season the SQT/MT emission rate ratio was similar to 10, but it became smaller as summer proceeded, being only similar to 3 in July. Isoprene, MT and SQT emissions were exponentially dependent on temperature (correlation coefficients (R-2) 0.75, 0.66 and 0.52, respectively). Isoprene emission rates were also found to be exponentially correlated with the gross primary production of CO2 (R-2 = 0.85 in July). Even with the higher emissions from the wetland, ambient air concentrations of isoprene were on average > 100, > 10 and > 6 times lower than MT concentrations in May, June and July, respectively. This indicates that wetland was not the only source affecting atmospheric concentrations at the site, but surrounding coniferous forests, which are high MT emitters, contribute as well. Daily mean MT concentrations had high negative exponential correlation (R-2 = 0.96) with daily mean ozone concentrations indicating that vegetation emissions can be a significant chemical sink of ozone in this sub-Arctic area.Peer reviewe

    Terpenoid and carbonyl emissions from Norway spruce in Finland during the growing season

    Get PDF
    We present spring and summer volatile organic compound (VOC) emission rate measurements from Norway spruce (Picea abies L. Karst) growing in a boreal forest in southern Finland. The measurements were conducted using in situ gas chromatograph with 1 to 2 h time resolution to reveal quantitative and qualitative short-term and seasonal variability of the emissions. The measurements cover altogether 14 weeks in years 2011, 2014 and 2015. Monoterpene (MT) and sesquiterpene (SQT) emission rates were measured all the time, but isoprene only in 2014 and 2015 and acetone and C-4-C-10 aldehydes only in 2015. The emission rates of all the compounds were low in spring, but MT, acetone, and C-4-C-10 aldehyde emission rates increased as summer proceeded, reaching maximum emission rates in July. Late summer mean values (late July and August) were 29, 17, and 33 ng g(dw)(-1) h(-1) for MTs, acetone, and aldehydes respectively. SQT emission rates increased during the summer and highest emissions were measured in late summer (late summer mean value 84 ng g(dw)(-1) h(-1)) concomitant with highest linalool emissions most likely due to stress effects. The between-tree variability of emission pattern was studied by measuring seven different trees during the same afternoon using adsorbent tubes. Especially the contributions of limonene, terpinolene, and camphene were found to vary between trees, whereas proportions of alpha-pinene (25 +/- 5 %) and beta-pinene (7 +/- 3 %) were more stable. Our results show that it is important to measure emissions at canopy level due to irregular emission pattern, but reliable SQT emission data can be measured only from enclosures. SQT emissions contributed more than 90% of the ozone reactivity most of the time, and about 70% of the OH reactivity during late summer. The contribution of aldehydes to OH reactivity was comparable to that of MT during late summer, 10-30% most of the time.Peer reviewe

    Sesquiterpenes and oxygenated sesquiterpenes dominate the VOC (C-5-C-20) emissions of downy birches

    Get PDF
    Biogenic volatile organic compounds (BVOCs) emitted by the forests are known to have strong impacts in the atmosphere. However, lots of missing reactivity is found, especially in the forest air. Therefore better characterization of sources and identification/quantification of unknown reactive compounds is needed. While isoprene and monoterpene (MT) emissions of boreal needle trees have been studied quite intensively, there is much less knowledge on the emissions of boreal deciduous trees and emissions of larger terpenes and oxygenated volatile organic compounds (OVOCs). Here we quantified the downy birch (Betula pubescens) leaf emissions of terpenes, oxygenated terpenes and green leaf volatiles (GLVs) at the SMEAR II boreal forest site using in situ gas chromatographs with mass spectrometers. Sesquiterpenes (SQTs) and oxygenated sesquiterpenes (OSQTs) were the main emitted compounds. Mean emission rates of SQTs and OSQTs were significantly higher in the early growing season (510 and 650 ng g(dw)(-1) h(-1), respectively) compared to in the main (40 and 130 ng g(dw)(-1) h(-1), respectively) and late (14 and 46 ng g(dw)(-1) h(-1), respectively) periods, indicating that early leaf growth is a strong source of these compounds. The emissions had a very clear diurnal variation with afternoon maxima being on average 4 to 8 times higher than seasonal means for SQTs and OSQTs, respectively. fi Caryophyllene and fi-farnesene were the main SQTs emitted. The main emitted OSQTs were tentatively identified as 14-hydroxy-beta-caryophyllene acetate (M = 262 g mol(-1)) and 6-hydroxy-beta-caryophyllene (M D 220 g mol(-1)). Over the whole growing season, the total MT emissions were only 24% and 17% of the total SQT and OSQT emissions, respectively. A stressed tree growing in a pot was also studied, and high emissions of ff -farnesene and an unidentified SQT were detected together with high emissions of GLVs. Due to the relatively low volatility and the high reactivity of SQTs and OSQTs, downy birch emissions are expected to have strong impacts on atmospheric chemistry, especially on secondary organic aerosol (SOA) production.Peer reviewe

    Long-term total OH reactivity measurements in a boreal forest

    Get PDF
    Corrigendum: The legend in Fig. 6e has been mislabeled. The gray colorcorresponds to “Missing” and the other colors should havecorresponded to the same species as in Fig. 6f. The figure,which is also the key figure of the article, can be found belowwith the correct legend.Total hydroxyl radical (OH) reactivity measurements were conducted at the second Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II), a boreal forest site located in Hyytiala, Finland, from April to July 2016. The measured values were compared with OH reactivity calculated from a combination of data from the routine trace gas measurements (station mast) as well as online and offline analysis with a gas chromatographer coupled to a mass spectrometer (GC-MS) and offline liquid chromatography. Up to 104 compounds, mostly volatile organic compounds (VOCs) and oxidized VOCs, but also inorganic compounds, were included in the analysis, even though the data availability for each compound varied with time. The monthly averaged experimental total OH reactivity was found to be higher in April and May (ca. 20 s(-1)) than in June and July (7.6 and 15.4 s(-1), respectively). The measured values varied much more in spring with high reactivity peaks in late afternoon, with values higher than in the summer, in particular when the soil was thawing. Total OH reactivity values generally followed the pattern of mixing ratios due to change of the boundary layer height. The missing reactivity fraction (defined as the difference between measured and calculated OH reactivity) was found to be high. Several reasons that can explain the missing reactivity are discussed in detail such as (1) missing measurements due to technical issues, (2) not measuring oxidation compounds of detected biogenic VOCs, and (3) missing important reactive compounds or classes of compounds with the available measurements. In order to test the second hypothesis, a one-dimensional chemical transport model (SOSAA) has been used to estimate the amount of unmeasured oxidation products and their expected contribution to the reactivity for three different short periods in April, May, and July. However, only a small fraction (<4.5 %) of the missing reactivity can be explained by modelled secondary compounds (mostly oxidized VOCs). These findings indicate that compounds measured but not included in the model as well as unmeasured primary emissions contribute the missing reactivity. In the future, non-hydrocarbon compounds from sources other than vegetation (e.g. soil) should be included in OH reactivity studies.Peer reviewe

    Long-term measurements of volatile organic compounds highlight the importance of sesquiterpenes for the atmospheric chemistry of a boreal forest

    Get PDF
    The concentrations of terpenoids (isoprene; monoterpenes, MTs; and sesquiterpenes, SQTs) and oxygenated volatile organic compounds (OVOCs; i.e. aldehydes, alcohols, acetates and volatile organic acids, VOAs) were investigated during 2 years at a boreal forest site in Hyytiala, Finland, using in situ gas chromatograph mass spectrometers (GC-MSs). Seasonal and diurnal variations of terpenoid and OVOC concentrations as well as their relationship with meteorological factors were studied. Of the VOCs examined, C-2-C-7 unbranched VOAs showed the highest concentrations, mainly due to their low reactivity. Of the terpenoids, MTs showed the highest concentrations at the site, but seven different highly reactive SQTs were also detected. The monthly and daily mean concentrations of most terpenoids, aldehydes and VOAs were highly dependent on the temperature. The highest exponential correlation with temperature was found for a SQT (beta-caryophyllene) in summer. The diurnal variations in the concentrations could be explained by sources, sinks and vertical mixing. The diurnal variations in MT concentrations were strongly affected by vertical mixing. Based on the temperature correlations and mixing layer height (MLH), simple proxies were developed for estimating the MT and SQT concentrations. To estimate the importance of different compound groups and compounds in local atmospheric chemistry, reactivity with main oxidants (hydroxyl radical, OH; nitrate radical, NO3; and ozone, O-3) and production rates of oxidation products (OxPRs) were calculated. The MTs dominated OH and NO3 radical chemistry, but the SQTs greatly impacted O-3 chemistry, even though the concentrations of SQT were 30 times lower than the MT concentrations. SQTs were also the most important for the production of oxidation products. Since the SQTs show high secondary organic aerosol (SOA) yields, the results clearly indicate the importance of SQTs for local SOA production.Peer reviewe

    Evolution of α-Pinene Oxidation Products in the Presence of Varying Oxidizers: Negative APi-TOF Point of View

    Get PDF
    Laboratory experiments conducted in the frame of the CLOUD project at CERN investigated the oxidation of α-pinene oxidation products in a carefully controlled environment and with different oxidation conditions: 1) pure ozonolysis (with the use of an hydroxyl radical (⋅OH) scavenger), 2) ozonolysis without use of a scavenger, and 3) pure ⋅OH oxidation using nitrous acid (HONO) to produce ⋅OH. The anions and negatively charged clusters present in the chamber were analyzed and their chemical composition compared for the different oxidation pathways

    Oxidation product characterization from ozonolysis of the diterpene ent-kaurene

    Get PDF
    Diterpenes (C20H32) are biogenically emitted volatile compounds that only recently have been observed in ambient air. They are expected to be highly reactive, and their oxidation is likely to form condensable vapors. However, until now, no studies have investigated gas-phase diterpene oxidation. In this paper, we explored the ozonolysis of a diterpene, ent-kaurene, in a simulation chamber. Using state-of-the-art mass spectrometry, we characterized diterpene oxidation products for the first time, and we identified several products with varying oxidation levels, including highly oxygenated organic molecules (HOM), monomers, and dimers. The most abundant monomers measured using a nitrate chemical ionization mass spectrometer were C19H28O8 and C20H30O5, and the most abundant dimers were C38H60O6 and C39H62O6. The exact molar yield of HOM from kaurene ozonolysis was hard to quantify due to uncertainties in both the kaurene and HOM concentrations, but our best estimate was a few percent, which is similar to values reported earlier for many monoterpenes. We also monitored the decrease in the gas-phase oxidation products in response to an increased condensation sink in the chamber to deduce their affinity to condense. The oxygen content was a critical parameter affecting the volatility of products, with four to five O atoms needed for the main monomeric species to condense onto 80 nm particles. Finally, we report on the observed fragmentation and clustering patterns of kaurene in a Vocus proton-transfer-reaction time-of-flight mass spectrometer. Our findings highlight similarities and differences between diterpenes and smaller terpenes during their atmospheric oxidation, but more studies on different diterpenes are needed for a broader view of their role in atmospheric chemistry.Peer reviewe

    Ternary H_2SO_4-H_2O-NH_3 Neutral and Charged Nucleation Rates for a Wide Range of Atmospheric Conditions

    Get PDF
    The formation of new particles for the ternary system involving sulfuric acid, water vapor and ammonia has been studied in detail. The nucleation rates were obtained from experiments at the CERN CLOUD chamber which allows the measurement of new particle formation under very well defined conditions. Some of its key features are the suppression of contaminants at the technological limit and a very precise control of a wide range of temperatures, trace gas concentrations and nucleation rates. The effect of ionizing radiation on the ternary nucleation rates was investigated by using the CERN proton synchrotron beam (beam conditions), natural galactic cosmic rays (gcr conditions) as well as the high voltage clearing field inside the chamber to suppress the effect of charges (neutral conditions). The dependence of the nucleation rate on ion concentration, sulfuric acid and ammonia concentration as well as temperature was studied extensively. This way, an unprecedented set of data was collected giving insight into the role of neutral and charged ternary NH_3 nucleation and the relative importance of the different parameters
    corecore